Tetracyclic Triterpenes. Part 7.1 Circular Dichroism of Some Steroid and Triterpenoid 5-En-7-ones; Conformational Aspects

Zdzisław Paryzek * and Jacek K. Gawroński
Department of Chemistry, Adam Mickiewicz University, 60-780 Poznań, Poland

Abstract

C.d. spectra of some steroid and triterpenoid 4,4-dimethyl-5-en-7-ones, showing long-wavelength $n \longrightarrow \pi^{*}$ and $\pi \rightarrow \pi^{*}$ Cotton effects of opposite sign to those of ordinary 5 -en- 7 -ones, are indicative of ring B conformations close to the two different sofa conformations: $\mathrm{S}(9 \alpha)$ in the $9 \alpha, 10 \beta$-series and $\mathrm{S}(8 \alpha)$ in the $9 \beta, 10 \alpha$-series.

Circular dichroism (c.d.) has proved a sensitive tool for studying conformations of cyclohexenones, including the large family of conjugated steroidal 4-en-3-ones (for recent accounts see refs. 2-5). Of particular interest are the changes in c.d. spectra that follow changes of configuration at $\mathrm{C}-10$ and $\mathrm{C}-9 .{ }^{3}$ The conformational and chiroptical features of the ring $B 5$-en-7-ones have been explored to a much lesser extent. ${ }^{67}$ Recent progress in the synthesis of such enones as intermediates for transformation of lanosterol into cucurbitacins ${ }^{1.8}$ and resolving the need for knowledge of their stereochemistry have prompted us to report the c.d. spectia in the $n \longrightarrow \pi^{*}$ and $\pi \longrightarrow \pi^{*}$ transition range.

In our analysis we will utilize the well established concept of the relation of the $n \longrightarrow \pi^{*}$ and long-wavelength $\pi \longrightarrow \pi^{*}$ Cotton effects (at $300-350$ and $230-250 \mathrm{~nm}$, respectively) to the helicity of the enone system (i.e. non-coplanarity of the $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{O}$ groups $)^{2.3 .9 .10}$ as well as the recently formulated dependence of the short-wavelength $\pi \longrightarrow \pi^{*}$ Cotton effect (at ca. 200-220 nm) upon the absolute configuration and conformation of the cyclohexenone ring. ${ }^{3}$ (For alternative interpretations of the structural dependence of the short-wavelength $\pi \longrightarrow \pi^{*}$ Cotton effect see ref. 4 and references cited therein.) In order to obtain a more reliable conformational picture, supplementary ${ }^{1} \mathrm{H}$ n.m.r. and X-ray data will be discussed.

The results of the c.d. measurements on the new compounds are listed in the Table. Besides the ' normal ' series compounds (1)-(4) ($9 \alpha, 10 \beta$-configuration), the examples include the $9 \beta, 10 \alpha$-stereoisomers (5)-(10) and the $9 \beta, 10 \beta$-stereoisomer (11). All these enones (4)-(11) contain the 4,4-dimethyl and 14α-methyl substituents, which may additionally contribute to the conformational and c.d. characteristics. The effect of the 4,4-dimethyl system seems especially important, as numerous literature data indicate that the influence of 4,4dimethyl substitution on the ring A conformation is rather sensitive to the overall stereochemistry of the skeleton. For example, it has been recently shown by X-ray analysis that in saturated 3-oxo-4,4-dimethyl-5 2 -steroids, ring A adopts a flattened chair conformation, with less distortion in the 19-nor-series. ${ }^{11}$ However, in the presence of the equatorial $6 \alpha-$ hydroxy-group, ring A in 3-oxo-4,4-dimethylandrostane assumes a fully staggered twist-boat conformation, intermediate between the $\mathrm{C}(2)-\mathrm{C}(5)$ and $\mathrm{C}(3)-\mathrm{C}(10)$ boat conformations, in which all potential non-bonded interactions are simultaneously minimised. ${ }^{12}$ Flattening of ring A in 3-oxo-4,4dimethyl steroids also accounts for the negative $n \longrightarrow \pi^{*}$ Cotton effect of the 3-oxo-group. Similarly a ring A chair conformation in 3-oxo-4,4-dimethyl steroids is indicated by recent theoretical calculations and by lanthanoid-induced shift studies. ${ }^{13}$

Turning now to the Δ^{5}-series we note that the olefinic bond lowers the energy difference between chair and boat forms, so

Table. C.d. data for 5-en-7-ones

Compound	C.d. $\Delta \varepsilon(\mathrm{nm})$		
	$n \longrightarrow \pi^{*}$	$\pi \longrightarrow \pi^{*}$	
		Band 1	Band 2
(1)	$\begin{aligned} & -0.1(373) \\ & +1.35(333) \end{aligned}$	-12sh (232)	-16.0 (214)
(2)	-0.11 (385)	-7.6sh (235)	- 13.1 (212)
	+1.30 (336)		
(3)	-1.30 (355)	+ 1.2 (255)	-12.3 (218)
(4) ${ }^{\text {a }}$	$\begin{aligned} & -1.94 \\ & (343-355) \end{aligned}$	+ 7.6 (253)	-18.9 (225.5)
(5)	-1.04 (339)	+17.5 (242)	
(6)	-0.79 (340)	+16.4 (239)	
(7) ${ }^{\text {b }}$	-0.80 (339)	+17.2 (240)	
(8)	-0.82 (339)	+17.1 (240)	
(9) ${ }^{\text {c }}$	-0.53 (341)	+16.8 (236)	
(10) ${ }^{\text {d }}$	-0.98 sh (337)	+ 12.2 (248)	
(11)	-0.89 (341)	+18.8 (238)	

${ }^{\text {a }}$ Additional $n \rightarrow \pi^{*}$ Cotton effect due to the 11-oxo-group: +2.1 (294). ${ }^{b}$ Additional $n \rightarrow \pi^{*}$ Cotton effect due to the 20 -oxo-group: +3.5 (285). ${ }^{c}$ Additional $n \rightarrow \pi^{*}$ Cotton effect due to the 11 -oxogroup: +6.0 (298). ${ }^{\text {d }}$ Additional Cotton effects due to the Δ^{5}-3-oxo-group: -3.58 (293), -5.2 (216).

(1) - (4)

$(5)-(10)$
(1) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$
(2) $\mathrm{R}^{1}=\mathrm{OAc}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$
(3) $\mathbf{R}^{1}=\mathbf{R}^{3}=\mathbf{H}, \mathbf{R}^{2}=\mathbf{M e}$
(4) $\mathrm{R}^{1}=\mathrm{OAc}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{Me}$ (11-oxo)
(5) $\mathrm{R}^{1}=\beta-\mathrm{OH}, \mathrm{R}^{2}=\beta-\mathrm{OH}, \mathrm{R}^{3}=\mathrm{C}_{8} \mathrm{H}_{17}$
(6) $\mathrm{R}^{1}=\beta$-OAc, $\mathrm{R}^{2}=\beta$-OAc, $\mathrm{R}^{3}=\mathrm{C}_{8} \mathrm{H}_{17}$
(7) $\mathrm{R}^{1}=\beta$-OAc, $\mathrm{R}^{2}=\beta-\mathrm{OAc}, \mathrm{R}^{3}=\mathrm{COMe}$
(8) $\mathrm{R}^{1}=\beta$-OAc, $\mathrm{R}^{2}=\beta$-OAc, $\mathrm{R}^{3}=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{CO}_{2} \mathrm{Me}$
(9) $\mathrm{R}^{1}=\beta$-OAc, $\mathrm{R}^{2}=\mathrm{O}, \mathrm{R}^{3}=\mathrm{C}_{8} \mathrm{H}_{17}$
(10) $\mathrm{R}^{1}=\mathrm{O}, \mathrm{R}^{2}=\beta-\mathrm{OAc}, \mathrm{R}^{3}=\mathrm{C}_{8} \mathrm{H}_{17}$
that the $4 \alpha-\mathrm{Me}, 6-\mathrm{H}$ interaction can drive the ring A conformational equilibrium towards the twist-boat conformation, as shown above for 6α-hydroxy-4,4-dimethyl-3-ketones. Indeed, the twist-boat ring A conformation in 4,4-dimethyl-5-en-3ones is also demonstrated by dipole moment and force-field calculations, ${ }^{14}$ as well as by X-ray analysis. ${ }^{15}$

(11)

(12)

The conformation of ring B in 5-en-7-ones with no ad ditional substituents is of the sofa type, enantiomeric to the ring A conformation in unsubstituted 4 -en-3-ones. Indeed, the c.d. spectra of (1) ${ }^{3}$ and (2) are of mirror-image type in relation to those of the corresponding 4 -en-3-ones, thus suggesting the $\mathrm{HC}(8 \beta, 9 \alpha)-\mathrm{S}(9 \alpha)$ ring B conformation (Figure), quasienantiomeric to the $\mathrm{HC}(1 \alpha, 2 \beta)-\mathrm{S}(1 \alpha)$ ring A conformation ${ }^{3}$ (in the strain-free chair conformation of ring A the equatorial 3β-acetoxy-group has little effect on the conformation of the $5-\mathrm{en}$ - 7 -one system). On the other hand, the 4,4-dimethyl system has a pronounced effect on the c.d. spectra of the 5 -en7 -one in (3) as compared with (1). ${ }^{3}$ This effect, essentially a reversal of the signs of the $n \longrightarrow \pi^{*}$ and long-wavelength $\pi \longrightarrow \pi^{*}$ Cotton effects, can be attributed to the interaction of the chromophore with the allylic bonds at C-4 and to the conformational change of ring A (see above), followed by a change of ring B conformation towards $\mathrm{S}(9 \alpha)-\mathrm{DP}(8 \alpha, 9 \alpha)$ (Figure). In relation to $\mathrm{HC}(8 \beta, 9 \alpha)$, the $\mathrm{DP}(8 \alpha, 9 \alpha)$ conformation has the opposite sense of enone helicity, in accord with the change of signs of the $n \longrightarrow \pi^{*}$ and long-wavelength $\pi \rightarrow \pi^{*}$ Cotton effects. The 11-oxo-derivative (4) retains all the chiroptical properties displayed by (3). The magnitudes of the $n \longrightarrow \pi^{*}$ and long-wavelength $\pi \longrightarrow \pi^{*}$ Cotton effects are higher in (4), but it is difficult to attribute this effect to any particular substituent in the $3 \beta-11-$, or 14α-position. It is of interest that 5 -en-7-ones (1)-(4) with the $9 \alpha, 10 \beta$-configuration exhibit a strong negative short-wavelength $\pi \longrightarrow \pi^{*}$ Cotton effect, ${ }^{16}$ irrespective of the presence of the 4,4-dimethyl systems, and in accord with the 'configurational rule' recently proposed for cyclohexanones. ${ }^{3}$

The reversal of configuration at $C(9)$ and $C(10)$ brings about, as expected, a change of overall geometry of the steroid skeleton. The torsion angle $\varphi(6-5-10-9)$ takes a negative value and the skeleton in strain-free conformation contains ring B in $\mathrm{HC}(8 \alpha, 9 \beta)$-form. A ring B half-chair conformation has been assigned to Δ^{5}-olefins with the $9 \beta, 10 \alpha$-configuration by ${ }^{1} \mathrm{H}$ n.m.r. studies, ${ }^{17}$ and a flattened half-chair conformation from an X-ray study of datiscoside (12). ${ }^{18}$ It should be noted that the ring $B 9 \beta, 10 \alpha$ configuration requires an 'inverted chair' conformation of ring A in order to release the strain. In such cases ${ }^{1} \mathrm{H}$ n.m.r. spectra prove the equatorial position of the 3α-hydrogen atom. In the spectra of compounds (5)(9) the signal of the 3α-proton appears as a broadened singlet of half-width $c a .5 \mathrm{~Hz}{ }^{1,8}$ in contrast to broad multiplets observed for compounds having the $9 \alpha, 10 \beta$-configuration. The 'inverted chair' ring A conformation is demonstrated in yet another way in the diketone (10). Here, the β, γ-unsaturated 3-ketone displays a strong negative $n \longrightarrow \pi^{*}$ Cotton effect

$s(9 \alpha)$

HC ($8 \beta, 9 \alpha)$

$H C(8 \alpha, 9 \beta)$

$S(8 \alpha)$

Figure. Ring B conformations in 5-en-7-ones: $\mathbf{S}=$ sofa, $\mathrm{HC}=$ half chair, $\mathrm{DP}=1,3$-diplanar
($\Delta \varepsilon-3.58$ at 293 nm), while ' normal chair' 4,4-dimethyl-5-en-3-ones are characterized by a positive $n \longrightarrow \pi^{*}$ Cotton effect. ${ }^{19}$ Thus, the absolute conformation of the β, γ-unsaturated ketone chromophore is of enantiomeric type in both cases. Our c.d. data on $9 \beta, 10 \alpha-5$-en-7-ones (5)-(10) demonstrate a consistently negative $n \longrightarrow \pi^{*}$ Cotton effect and a strong positive long-wavelength $\pi \longrightarrow \pi^{*}$ Cotton effect, behaviour observed for 4 -en-3-ones in $\mathrm{HC}(1 \alpha, 2 \beta)-\mathrm{S}(2 \beta)$ conformations. ${ }^{3}$ It thus follows that the ring B conformation in (5)-(10), if taken as $\mathrm{HC}(8 \alpha, 9 \beta)-\mathrm{S}(8 \alpha)$, is indeed compatible with the c.d. data. Large long-wavelength $\pi \longrightarrow \pi^{*}$ Cotton effects in (5)(10) suggest considerable non-coplanarity of the enone chromophore, further supported by the weak (i.e. not observed as a separate peak) short-wavelength $\pi \longrightarrow \pi^{*}$ Cotton effect. The apparent lack of the short-wavelength $\pi \longrightarrow \pi^{*}$ Cotton effect has been noted in related 4-en-3-ones with large enone skew angles. ${ }^{3}$
The c.d. data for the $9 \beta, 10 \beta-5-\mathrm{en}$-7-one (11) do not differ considerably from those of (4)-(10), except for a slightly larger long-wavelength $\pi \longrightarrow \pi^{*}$ Cotton effect in (11), suggesting the dominance of the highly skewed conformer $S(8 \alpha)$ in the equilibrium. It is appropriate to note here that (6) and (11) give different ${ }^{1} \mathrm{H}$ n.m.r. signal patterns for the 3α hydrogen atom and thus have different ring A conformations. ${ }^{8}$ In (11) flattening of ring B in the $\mathbf{S}(8 \alpha)$ conformation around the ring A / B junction causes ring A to take up a distorted chair conformation with the 3α-hydrogen atom close to the axial position. The upfield shift of the axial 3α-proton signal in (11) ($\delta 4.60$) as compared with (6) ($\delta 4.82$) supports the assignment.

Experimental

C.d. spectra were recorded at room temperature with a JobinYvon Dichrograph Mark III for solutions in acetonitrile at a concentration of $c a .1 \mathrm{mg}$ in 10 ml and with a pathlength of 1 cm .

Acknowledgement

We thank the Polish Academy of Sciences for financial support.

References

1 Part 6, Z. Paryzek and R. Wydra, Steroids, 1981, 38, 141.
2 V. Delaroff, N. Dupvy, L. Nedelec, and M. Legrand, Tetrahedron, 1979, 35, 2681.
3 J. Gawroński, Tetrahedron, 1982, 38, 3.
4 R. D. Burnett and D. N. Kirk, J. Chem. Soc., Perkin Trans. I, 1981, 1460.

5 M. Legrand and M. J. Rougier, in 'Stereochemistry. Fundamentals and Methods,' ed. H. B. Kagan, vol. 2, pp. 123-127, Thieme, Stuttgart, 1977.
6 G. Snatzke, Tetrahedron, 1965, 21, 421.
7 R. Tschesche, G. Biernoth, and G. Snatzke, Liehigs Ann. Chem., 1964, 674, 196.
8 Z. Paryzek, J. Chem. Soc., Perkin Trans. I, 1979, 1222.
9 C. Djerassi, R. Records, E. Bunnenberg, K. Mislow, and A. Moscowitz, J. Am. Chem. Soc., 1962, 84, 870.
10 W. B. Whalley, Chem. Ind., 1962, 1024.
11 G. Ferguson, E. W. Macaulay, J. M. Robertson, J. M. Midgley, W. B. Whalley, and B. A. Lodge, J. Chem. Soc., Perkin Trans. 2, 1980, 1170.
12 W. B. Whalley, G. Ferguson, and M. A. Khan, J. Chem. Soc., Perkin Trans. 2, 1980, 1183.

13 D. A. Dougherty, K. Mislow, J. W. Huffman, and J. Jacobus, J. Org. Chem., 1979, 44, 1585.

14 U. Burkert and N. L. Allinger, Tetrahedron, 1978, 34, 807.
15 G. Ferguson, W. C. Marsh, J. M. Midgley, and W. B. Whaley, J. Chem. Soc., Perkin Trans. 2, 1978, 272.

16 L. Velluz, M. Legrand, and R. Viennet, C.R. Acad. Sci., 1965, 261, 1687.
17 J. R. Bull and C. J. van Zyl, Tetrahedron, 1972, 28, 3957.
18 R. J. Restivo, R. F. Bryan, and S. M. Kupchan, J. Chem. Soc., Perkin Trans. 2, 1973, 892.
19 K. Mislow, M. A. W. Glass, R. E. O’Brien, P. Rutkin, D. H. Steinberg, J. Weiss, and C. Djerassi, J. Am. Chem. Soc., 1962, 84, 1455.

