Tetracyclic Triterpenes. Part 7.1 Circular Dichroism of Some Steroid and Triterpenoid 5-En-7-ones; Conformational Aspects

Zdzisław Paryzek * and Jacek K. Gawroński

Department of Chemistry, Adam Mickiewicz University, 60-780 Poznań, Poland

C.d. spectra of some steroid and triterpenoid 4,4-dimethyl-5-en-7-ones, showing long-wavelength $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ Cotton effects of opposite sign to those of ordinary 5-en-7-ones, are indicative of ring *B* conformations close to the two different sofa conformations: $S(9\alpha)$ in the $9\alpha,10\beta$ -series and $S(8\alpha)$ in the $9\beta,10\alpha$ -series.

Circular dichroism (c.d.) has proved a sensitive tool for studying conformations of cyclohexenones, including the large family of conjugated steroidal 4-en-3-ones (for recent accounts see refs. 2-5). Of particular interest are the changes in c.d. spectra that follow changes of configuration at C-10 and C-9.³ The conformational and chiroptical features of the ring B 5-en-7-ones have been explored to a much lesser extent.⁶⁷ Recent progress in the synthesis of such enones as intermediates for transformation of lanosterol into cucurbitacins ^{1.8} and resolving the need for knowledge of their stereochemistry have prompted us to report the c.d. spectra in the $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ transition range.

In our analysis we will utilize the well established concept of the relation of the $n \rightarrow \pi^*$ and long-wavelength $\pi \rightarrow \pi^*$ Cotton effects (at 300–350 and 230–250 nm, respectively) to the helicity of the enone system (*i.e.* non-coplanarity of the C=C and C=O groups)^{2,3,9,10} as well as the recently formulated dependence of the short-wavelength $\pi \rightarrow \pi^*$ Cotton effect (at *ca.* 200–220 nm) upon the absolute configuration and conformation of the cyclohexenone ring.³ (For alternative interpretations of the structural dependence of the short-wavelength $\pi \rightarrow \pi^*$ Cotton effect see ref. 4 and references cited therein.) In order to obtain a more reliable conformational picture, supplementary ¹H n.m.r. and X-ray data will be discussed.

The results of the c.d. measurements on the new compounds are listed in the Table. Besides the 'normal' series compounds (1)-(4) $(9\alpha, 10\beta$ -configuration), the examples include the 9β , 10α -stereoisomers (5)-(10) and the 9β , 10β -stereoisomer (11). All these enones (4)—(11) contain the 4,4-dimethyl and 14α -methyl substituents, which may additionally contribute to the conformational and c.d. characteristics. The effect of the 4,4-dimethyl system seems especially important, as numerous literature data indicate that the influence of 4.4dimethyl substitution on the ring A conformation is rather sensitive to the overall stereochemistry of the skeleton. For example, it has been recently shown by X-ray analysis that in saturated 3-oxo-4,4-dimethyl-5 α -steroids, ring A adopts a flattened chair conformation, with less distortion in the 19nor-series.¹¹ However, in the presence of the equatorial 6α hydroxy-group, ring A in 3-oxo-4,4-dimethylandrostane assumes a fully staggered twist-boat conformation, intermediate between the C(2)—C(5) and C(3)—C(10) boat conformations, in which all potential non-bonded interactions are simultaneously minimised.¹² Flattening of ring A in 3-oxo-4,4dimethyl steroids also accounts for the negative $n \rightarrow \pi^*$ Cotton effect of the 3-oxo-group. Similarly a ring A chair conformation in 3-oxo-4,4-dimethyl steroids is indicated by recent theoretical calculations and by lanthanoid-induced shift studies.13

Turning now to the Δ^{s} -series we note that the olefinic bond lowers the energy difference between chair and boat forms, so

Table.	C.d.	data	for	5-en-7	-ones
--------	------	------	-----	--------	-------

Compound	C.d. Δε (nm)				
	<u> </u>	$\pi \longrightarrow \pi^*$			
	<i>n</i> — > π*	Band 1	Band 2		
(1)	-0.1 (373) +1.35 (333)	-12sh (232)	-16.0 (214)		
(2)	-0.11(385) +1.30(336)	-7.6sh (235)	-13.1 (212)		
(3)	-1.30(355)	+1.2 (255)	-12.3(218)		
(4) ^a	-1.94 (343-355)	+7.6 (253)	-18.9 (225.5)		
(5)	-1.04 (339)	+17.5 (242)			
(6)	-0.79 (340)	+16.4(239)			
(7) *	-0.80 (339)	+17.2(240)			
(8)	-0.82(339)	+17.1(240)			
(9) ^c	-0.53(341)	+16.8(236)			
(10) 4	-0.98sh (337)	+12.2 (248)			
(11)	-0.89 (341)	+18.8(238)			

^{*a*} Additional $n \rightarrow \pi^*$ Cotton effect due to the 11-oxo-group: +2.1 (294). ^{*b*} Additional $n \rightarrow \pi^*$ Cotton effect due to the 20-oxo-group: +3.5 (285). ^{*c*} Additional $n \rightarrow \pi^*$ Cotton effect due to the 11-oxo-group: +6.0 (298). ^{*d*} Additional Cotton effects due to the Δ^5 -3-oxo-group: -3.58 (293), -5.2 (216).

that the 4α -Me, 6-H interaction can drive the ring A conformational equilibrium towards the twist-boat conformation, as shown above for 6α -hydroxy-4,4-dimethyl-3-ketones. Indeed, the twist-boat ring A conformation in 4,4-dimethyl-5-en-3ones is also demonstrated by dipole moment and force-field calculations,¹⁴ as well as by X-ray analysis.¹⁵

The conformation of ring B in 5-en-7-ones with no ad ditional substituents is of the sofa type, enantiomeric to the ring A conformation in unsubstituted 4-en-3-ones. Indeed, the c.d. spectra of (1)³ and (2) are of mirror-image type in relation to those of the corresponding 4-en-3-ones, thus suggesting the $HC(8\beta,9\alpha)-S(9\alpha)$ ring B conformation (Figure), quasienantiomeric to the HC(1 α ,2 β)-S(1 α) ring A conformation³ (in the strain-free chair conformation of ring A the equatorial 3β-acetoxy-group has little effect on the conformation of the 5-en-7-one system). On the other hand, the 4,4-dimethyl system has a pronounced effect on the c.d. spectra of the 5-en-7-one in (3) as compared with (1).³ This effect, essentially a reversal of the signs of the $n \rightarrow \pi^*$ and long-wavelength $\pi \longrightarrow \pi^*$ Cotton effects, can be attributed to the interaction of the chromophore with the allylic bonds at C-4 and to the conformational change of ring A (see above), followed by a change of ring B conformation towards $S(9\alpha)$ -DP(8α , 9α) (Figure). In relation to HC(8 β ,9 α), the DP(8 α ,9 α) conformation has the opposite sense of enone helicity, in accord with the change of signs of the $n \rightarrow \pi^*$ and long-wavelength $\pi \longrightarrow \pi^*$ Cotton effects. The 11-oxo-derivative (4) retains all the chiroptical properties displayed by (3). The magnitudes of the $n \longrightarrow \pi^*$ and long-wavelength $\pi \longrightarrow \pi^*$ Cotton effects are higher in (4), but it is difficult to attribute this effect to any particular substituent in the 3β -, 11-, or 14α -position. It is of interest that 5-en-7-ones (1)-(4) with the 9α , 10β -configuration exhibit a strong negative short-wavelength $\pi \longrightarrow \pi^*$ Cotton effect,¹⁶ irrespective of the presence of the 4,4-dimethyl systems, and in accord with the ' configurational rule ' recently proposed for cyclohexanones.³

The reversal of configuration at C(9) and C(10) brings about, as expected, a change of overall geometry of the steroid skeleton. The torsion angle φ (6-5-10-9) takes a negative value and the skeleton in strain-free conformation contains ring Bin HC(8α ,9 β)-form. A ring B half-chair conformation has been assigned to Δ^5 -olefins with the 9 β ,10 α -configuration by ¹H n.m.r. studies,¹⁷ and a flattened half-chair conformation from an X-ray study of datiscoside (12).¹⁸ It should be noted that the ring B 9 β ,10 α configuration requires an 'inverted chair' conformation of ring A in order to release the strain. In such cases ¹H n.m.r. spectra prove the equatorial position of the 3α -hydrogen atom. In the spectra of compounds (5)---(9) the signal of the 3α -proton appears as a broadened singlet of half-width ca. 5 Hz,^{1,8} in contrast to broad multiplets observed for compounds having the 9α , 10β -configuration. The 'inverted chair ' ring A conformation is demonstrated in yet another way in the diketone (10). Here, the β , γ -unsaturated 3-ketone displays a strong negative $n \longrightarrow \pi^*$ Cotton effect

Figure. Ring B conformations in 5-en-7-ones: S = sofa, HC = half chair, DP = 1,3-diplanar

 $(\Delta \epsilon - 3.58 \text{ at } 293 \text{ nm})$, while ' normal chair ' 4,4-dimethyl-5en-3-ones are characterized by a positive $n \longrightarrow \pi^*$ Cotton effect.¹⁹ Thus, the absolute conformation of the β , γ -unsaturated ketone chromophore is of enantiomeric type in both cases. Our c.d. data on 9β , 10α -5-en-7-ones (5)-(10) demonstrate a consistently negative $n \longrightarrow \pi^*$ Cotton effect and a strong positive long-wavelength $\pi \longrightarrow \pi^*$ Cotton effect, behaviour observed for 4-en-3-ones in HC(1 α ,2 β)-S(2 β) conformations.³ It thus follows that the ring B conformation in (5)-(10), if taken as $HC(8\alpha,9\beta)$ -S(8 α), is indeed compatible with the c.d. data. Large long-wavelength $\pi \longrightarrow \pi^*$ Cotton effects in (5)— (10) suggest considerable non-coplanarity of the enone chromophore, further supported by the weak (i.e. not observed as a separate peak) short-wavelength $\pi \longrightarrow \pi^*$ Cotton effect. The apparent lack of the short-wavelength $\pi \longrightarrow \pi^*$ Cotton effect has been noted in related 4-en-3-ones with large enone skew angles.³

The c.d. data for the 9 β ,10 β -5-en-7-one (11) do not differ considerably from those of (4)—(10), except for a slightly larger long-wavelength $\pi \longrightarrow \pi^*$ Cotton effect in (11), suggesting the dominance of the highly skewed conformer S(8 α) in the equilibrium. It is appropriate to note here that (6) and (11) give different ¹H n.m.r. signal patterns for the 3 α hydrogen atom and thus have different ring A conformations.⁸ In (11) flattening of ring B in the S(8 α) conformation around the ring A/B junction causes ring A to take up a distorted chair conformation with the 3 α -hydrogen atom close to the axial position. The upfield shift of the axial 3 α -proton signal in (11) (δ 4.60) as compared with (6) (δ 4.82) supports the assignment.

Experimental

C.d. spectra were recorded at room temperature with a Jobin-Yvon Dichrograph Mark III for solutions in acetonitrile at a concentration of ca. 1 mg in 10 ml and with a pathlength of 1 cm.

Acknowledgement

We thank the Polish Academy of Sciences for financial support.

References

- 1 Part 6, Z. Paryzek and R. Wydra, Steroids, 1981, 38, 141.
- 2 V. Delaroff, N. Dupvy, L. Nedelec, and M. Legrand, Tetrahedron, 1979, 35, 2681.
- 3 J. Gawroński, Tetrahedron, 1982, 38, 3.
- 4 R. D. Burnett and D. N. Kirk, J. Chem. Soc., Perkin Trans. 1, 1981, 1460.

- J. CHEM. SOC. PERKIN TRANS. II 1983
- 5 M. Legrand and M. J. Rougier, in 'Stereochemistry. Fundamentals and Methods,' ed. H. B. Kagan, vol. 2, pp. 123-127, Thieme, Stuttgart, 1977.
- 6 G. Snatzke, Tetrahedron, 1965, 21, 421.
- 7 R. Tschesche, G. Biernoth, and G. Snatzke, Liebigs Ann. Chem., 1964, 674, 196.
- 8 Z. Paryzek, J. Chem. Soc., Perkin Trans. 1, 1979, 1222.
- 9 C. Djerassi, R. Records, E. Bunnenberg, K. Mislow, and A. Moscowitz, J. Am. Chem. Soc., 1962, 84, 870.
- 10 W. B. Whalley, Chem. Ind., 1962, 1024.
- 11 G. Ferguson, E. W. Macaulay, J. M. Robertson, J. M. Midgley, W. B. Whalley, and B. A. Lodge, J. Chem. Soc., Perkin Trans. 2, 1980, 1170.
- 12 W. B. Whalley, G. Ferguson, and M. A. Khan, J. Chem. Soc., Perkin Trans. 2, 1980, 1183.

- 13 D. A. Dougherty, K. Mislow, J. W. Huffman, and J. Jacobus, J. Org. Chem., 1979, 44, 1585.
- 14 U. Burkert and N. L. Allinger, Tetrahedron, 1978, 34, 807.
- 15 G. Ferguson, W. C. Marsh, J. M. Midgley, and W. B. Whaley, J. Chem. Soc., Perkin Trans. 2, 1978, 272.
- 16 L. Velluz, M. Legrand, and R. Viennet, C.R. Acad. Sci., 1965, 261, 1687.
- 17 J. R. Bull and C. J. van Zyl, Tetrahedron, 1972, 28, 3957.
- 18 R. J. Restivo, R. F. Bryan, and S. M. Kupchan, J. Chem. Soc., Perkin Trans. 2, 1973, 892.
- 19 K. Mislow, M. A. W. Glass, R. E. O'Brien, P. Rutkin, D. H. Steinberg, J. Weiss, and C. Djerassi, J. Am. Chem. Soc., 1962, 84, 1455.

Received 26th April 1982; Paper 2/685